QUIZ 12 SOLUTIONS: LESSON 16 OCTOBER 5, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [4 pts] Find the $4^{\text {th }}$ partial sum of

$$
\sum_{n=0}^{\infty} \frac{2 n^{2}}{n!}
$$

where we define $n!=n \cdot(n-1) \cdots 2 \cdot 1$ and $0!=1$.
Solution: The $4^{\text {th }}$ partial sum of this series is:

$$
\underbrace{\frac{2 \cdot 0^{2}}{0!}}_{1^{\text {st }}}+\underbrace{\frac{2 \cdot 1^{2}}{1!}}_{2^{\text {nd }}}+\underbrace{\frac{2 \cdot 2^{2}}{2!}}_{3^{\mathrm{rd}}}+\underbrace{\frac{2 \cdot 3^{2}}{3!}}_{4^{\text {th }}}
$$

Further, we note that

$$
0!=1, \quad 1!=1, \quad 2!=2 \cdot 1=2, \quad 3!=3 \cdot 2 \cdot 1=6
$$

Hence, our partial sum becomes

$$
\frac{2 \cdot 0}{1}+\frac{2 \cdot 1}{1}+\frac{2 \cdot 4}{2}+\frac{2 \cdot 9}{6}=0+2+4+3=9 .
$$

2. [6 pts] Determine whether the following converge. If so, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{5^{n}}{7^{n}}$

Solution: We write

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{7^{n}}=\sum_{n=1}^{\infty}\left(\frac{5}{7}\right)^{n}
$$

Here, $r=\frac{5}{7}$ and, since $\left|\frac{5}{7}\right|<1$, we conclude this series converges. We find its sum as follows:

$$
\sum_{n=1}^{\infty}\left(\frac{5}{7}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{5}{7}\right)^{n+1}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \underbrace{\left(\frac{5}{7}\right)}_{c} \underbrace{\left(\frac{5}{7}\right)^{n}}_{r^{n}} \\
& =\frac{\frac{5}{7}}{1-\frac{5}{7}} \text { by the geometric series formula } \\
& =\frac{7}{7} \cdot \frac{\frac{5}{7}}{1-\frac{5}{7}} \\
& =\frac{5}{7-5}=\frac{5}{2}
\end{aligned}
$$

(b) $\sum_{n=0}^{\infty}\left(-\frac{3}{e}\right)^{n}$

Solution: Since $r=-\frac{3}{e}$ and $\left|-\frac{3}{e}\right|>1$, this series diverges.

